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Abstract

The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a

statistical graphical model that applies phylogenetic principles to automate precise protein function pre-

diction (Engelhardt et al., 2005, 2006). Here we present a significant revision of the approach (SIFTER

version 2.0) that allows annotations to be made on a genomic scale. We confirm that SIFTER 2.0 pro-

duces equivalently precise predictions to the earlier version of SIFTER on a carefully studied family and

on a collection of one hundred protein families with limited functional diversity. We have added an ap-

proximation method to SIFTER 2.0, and show a 500-fold improvement in speed with minimal impact on

prediction results in the functionally diverse sulfotransferase protein family. On the Nudix protein family,

which was previously inaccessible to the SIFTER framework because of the 66 possible molecular func-

tions, SIFTER achieved 47.4% accuracy on experimental data (where BLAST achieved 34.0%). Finally,

we used SIFTER to annotate all of the Schizosaccharomyces pombe proteins with experimental functional

characterizations, based on annotations from proteins in 46 complete fungal genomes. SIFTER precisely

predicted molecular function for 45.5% of the characterized proteins in this genome, as compared with

four current function prediction methods that precisely predicted function for 62.6%, 30.6%, 6.0% and

5.7% of these same proteins. We use both precision-recall curves and ROC analyses to compare these

genome-scale predictions across the different methods and to assess performance on different types of

applications. SIFTER 2.0 is now capable of predicting protein molecular function for large and func-

tionally diverse protein families using an approximate statistical model, enabling phylogenetics-based

protein function prediction for genome-wide analyses. The code for SIFTER and protein family data are

available for download at http://sifter.berkeley.edu.
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Introduction

Automated protein function prediction is an important challenge for computational biology because

protein function is difficult to describe and represent, protein databases are littered with annotation

errors, and our understanding of how molecular functions arise and mutate over evolutionary time is

far from complete. Because biologists depend upon protein function annotations for insight and anal-

ysis, automated methods have been used extensively to compensate for the relative dearth of exper-

imental characterizations. Although there are 107 protein sequences in the comprehensive Uniprot

database (UniProt Consortium, 2010b), less than 5% have annotations from the Gene Ontology An-

notation (GOA) database (Barrell et al., 2009). Far fewer (0.2%) have been manually annotated, and

only 0.25% of those manual annotations are from the molecular function ontology in Gene Ontology

(GO) (GO Consortium, 2010a) and are based on experimental evidence. Because of the need for so many

annotations, function prediction methods are often assessed based on annotation quantity rather than

quality, increasing the number of false positive function annotations and polluting databases (Galperin

and Koonin, 1998; Brenner, 1999; Schnoes et al., 2009). These errors propagate in databases: a query

protein may have the same function as that of the matched database protein in vivo, but the protein in

the database is incorrectly described. This problem could be managed in part by having every protein

annotation supported by traceable evidence, such as in the GOA database. Moreover, function prediction

methods that incorporate evidence codes and provide reliability measures would seem less prone to error

propagation.

Phylogenetics has been proposed as a powerful approach to meet the challenges of protein function

prediction, in an approach sometimes termed phylogenomics (Eisen, 1998). Phylogenetics-based protein

function prediction uses a reconciled phylogeny for a protein family to make predictions, rather than

transferring annotations based on pairwise sequence comparisons. Phylogeny-based methods rely on

two assumptions: that function evolves parsimoniously within a phylogeny, so the branching structure of

a phylogeny is more indicative of functional similarity than path length within the phylogeny; and that

functional divergence tends to follow a gene duplication event, because protein redundancy may allow

mutation events that otherwise would be selected against. We have found that the former assumption
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improves functional prediction by enabling a systematic methodology by which different annotations for

proteins in a tree can be integrated to make predictions. However, the assumption that gene duplication

events promote functional mutations is less helpful for prediction, in particular because the process of

reconciling gene and species trees produces many spurious duplication events, often obscuring the signal.

The role of gene duplication in phylogeny-based function prediction may be overemphasized relative to

the evolutionary history of actual function mutations, particularly as early studies focused on families

with an atypically low degree of gene duplication (Eisen and Hanawalt, 1999).

The phylogenetics-based approach to protein function prediction has many advantages. Lineage-

specific rate variation is a complex phenomenon prevalent across a wide range of families (e.g., (Thomas

et al., 2006)) that can create a situation where the most similar sequences according to BLAST (i.e., those

with the shortest path length in the tree) may not be the sequences most recently diverged from the query

sequence. In one example of lineage-specific rate variation (Figure 1), the path length between the query

protein (labeled “?”) ranks the remaining proteins differently than the branching order would rank the

proteins in terms of assumed functional similarity. Additional proteins that are siblings of the (func-

tionally different) protein with the shortest branch length (B1 in the figure) with similarly short branch

lengths will provide increasingly strong support for the incorrect function. Thus, the approach of using

the most significant hits according to BLAST is systematically flawed and may yield erroneous results

even as the number of known protein sequences increases. Use of a phylogeny specifically incorporates

the evolutionary history, minimizing problems due to rate variation, and suggests an evolutionarily-

principled means of merging functional evidence from homologous proteins. In particular, phylogenetic

distance can be thought of as a measure of the accuracy of annotating a query protein with a neighboring

protein’s known function. Instead of pairwise comparisons, a tree is the natural structure to specify and

explore how molecular function evolved within protein families.

While originally applied manually, phylogenetics-based protein function prediction has been de-

ployed in automated methods. One such method, Orthostrapper (Storm and Sonnhammer, 2002), uses

bootstrapping to identify orthologous clusters of proteins and transfers function annotations within each

of these clusters. Because these clusters have variable sizes, Orthostrapper tends to transfer either multi-
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ple or zero annotations to unannotated proteins. Our framework, SIFTER (Statistical Inference of Func-

tion Through Evolutionary Relationships) (Engelhardt et al., 2005, 2006), uses a statistical model of

function evolution to incorporate annotations throughout an evolutionary tree, making predictions sup-

ported by posterior probabilities for every protein. We fix the tree structure to the phylogeny recon-

structed from sequence data and employ a conditional probability model that describes how molecular

function evolves within the tree. This statistical model enables access to a broad set of statistical tools for

parameter estimation and computation of posterior probabilities of the molecular functions. We chose

this statistical approach because it yields predictions that are relatively robust to noise by merging evi-

dence across a tree. Robustness is essential in this problem, given that each protein family contains few

functional annotations, and there is noise in both the annotations and the reconstructed phylogeny.

The major drawback to phylogenetics-based methods is speed. The SIFTER model nominally has

exponential computational complexity in the number of candidate functions within a protein family. In

Pfam release 24.0, there were 753 families with nine or more molecular functions with experimental

evidence from the GOA database within the family’s proteins, and these families were 7.5 times larger

on average than families with fewer than six candidate functions. Based on Pfam-A, it is possible that

more than 33.5% of proteins from a single species could be contained within these large families, which

are currently inaccessible to SIFTER and related methods. Motivated by these families, in this new

version of SIFTER we have implemented a straightforward and effective approximation that enables

tractable computation of function predictions in large, functionally diverse families, and opens the door

to whole-genome annotation. Exact computation of posterior probabilities is exponential in the number

of candidate functions to account for the possibility, however small, that a protein has the ability to

perform any combination of the M candidate functions for that family, where there are 2M possible

combinations. Our approximation truncates the number of molecular function combinations that are

considered; for example, when we truncate at level 2, we only allow for the possibility that each protein

has 0, 1 or 2 of theM candidate functions, but no more. This approach is effective because the probability

of a protein having more than a few functions is small, both in our model and in vivo.

In this new version of SIFTER, we also wanted the model of molecular function evolution to be
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flexible enough to enable the encoding of prior biological knowledge and to allow us to construct the

transition rate matrix in a semantically meaningful way from a smaller set of parameters that in principle

can be estimated from the data. The fundamental change to SIFTER that meets these requirements is a

general model of evolution based on a continuous-time Markov chain. This also simplifies the machinery

required to compute posterior probabilities and to estimate the model parameters.

When exact computation is feasible, we show that SIFTER 2.0 produces almost identical results to

SIFTER 1.1. We demonstrate that the posteriors computed using truncation provide a good approximation

to the exact posteriors at all levels of truncation. We apply SIFTER with approximate computation to

the Nudix family, which is computationally infeasible for SIFTER 1.1 due to the number of candidate

functions. We illustrate that SIFTER is now suitable for genome-wide analysis by applying it to a genome-

scale prediction task for S. pombe proteins, and compare its performance with four other methods.

Results

Throughout this section, we ran BLAST, PFP (Hawkins et al., 2006), conFunc (Wass et al., 2008), and

FFPred (Lobley et al., 2008) for function prediction to compare against SIFTER results, whenever it was

viable to run those methods. We ran BLAST in two different ways (see Methods) in order to include both

a method that uses textual annotations (BLAST) and GOA database annotations (BLAST-GO). We define

accuracy as the percentage of proteins for which the functional term with the highest rank is an exact

match to one of the experimental annotations for that protein, with rank ties broken in favor of the correct

prediction. Our ROC-like analysis shows the relative increase of the true positive rate (exact matches of

predicted to characterized functions) versus the false positive rate as the cutoff threshold is made more

permissive (see Methods). For the sulfotransferase protein family assessment, we filter the GOA database

annotations and predicted terms to include only terms in SIFTER’s set of candidate functions; we do not

filter the GOA database annotations or predictions for the S. pombe assessment.

The accuracy measure provides a single overall assessment, but the accuracy measure and our ROC-

like analysis ignore the GO hierarchy, so predictions that are less precise than (but consistent with) the

true term are considered incorrect. Therefore, we also computed the F-score and an extended F-score
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(FX-score) of the prediction results. These scores compare the sets of annotated and predicted terms by

including in each set all terms that are ancestral to each specific term in the GO hierarchy (see Methods).

The FX-score assumes that predictions that are more specific than the annotated terms are correct so

that methods are not penalized because of overly general annotations from the GOA database. Prediction

results are summarized in Table 1. Our precision-recall curves show the relative precision and recall

when ancestral terms are included in the set of predictions and in the annotations, as for the F-scores (see

Methods). All methods were run, and their predictions extracted, as described in Methods.

SIFTER 2.0 produces equivalent results to SIFTER 1.1

SIFTER 2.0 is based on approximate posterior probabilities obtained from a truncation as well as a new

evolutionary model based on a continuous Markov chain model of functional evolution. We first assess

the impact of these changes on prediction in the small families previously used to benchmark SIFTER

1.1. We compare the results from SIFTER 2.0 to those from SIFTER 1.1 on a gold-standard protein

family considered in previous work (Engelhardt et al., 2006). On the AMP/adenosine deaminase Pfam

family, we found that SIFTER 1.1 produced identical predictions and near-identical ROC-like curves to

the results using exact computation from SIFTER 2.0. SIFTER (both 1.1 and 2.0) and BLAST-GO both

achieved 93.9% accuracy, missing predictions for two of the 33 characterized proteins, whereas conFunc

achieved 81.8% accuracy, PFP achieved 78.8% accuracy, BLAST achieved 66.7% accuracy, and FFPred

achieved 3% accuracy. (Complete results are in Supplemental material.)

In order to compare SIFTER 2.0 with SIFTER 1.1 more thoroughly, we selected 100 protein families

from Pfam with GOA database annotations and ran leave-one-out cross-validation for both versions of

SIFTER on these families. Both versions made predictions for the 1632 proteins with experimental anno-

tations across the 100 families, and SIFTER 2.0 achieved 72.5% accuracy, whereas SIFTER 1.1 achieved

70.0% accuracy. The two versions agreed on 95.3% of the predictions. We found that SIFTER 2.0 using

exact computation took approximately twice as long as SIFTER 1.1, where the bulk of the difference was

spent on the most functionally diverse families; if we limit the families to have 6 or fewer candidate

functions rather than 11, SIFTER 2.0 takes only 2% longer than SIFTER 1.1. (Complete experiment de-
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tails are in the Supplemental material.) These results illustrate that the new model for SIFTER produces

equivalent predictions based on exact computation as compared to the specialized model in SIFTER 1.1.

However, these analyses ignore a large percentage of proteins, as large and functionally-diverse families

were excluded from these 100 families because SIFTER 1.1 could not be applied to them.

Sulfotransferase Family

We applied SIFTER 2.0 to the sulfotransferase family (PF00685) from Pfam 20.0. We reconstructed a

phylogeny with 539 proteins, 48 of which have experimental annotations in the GOA database. There are

nine SIFTER candidate functions, eight of which are sulfotransferases acting on a specific compound, and

one of which is nucleotide binding. These enzymes are responsible for the transfer of sulfate groups to

specific compounds. Researchers have shown their critical role in mediation of intercellular communica-

tion (Bowman and Bertozzi, 1999). Human sulfotransferases are extensively studied because of their role

in metabolizing steroids, hormones, and environmental toxins (Allai-Hassani et al., 2007), and because

they are biologically linked to neuronal development and maintenance (Gibbs et al., 2006). Plasmodium

falciparum, the causative agent of malaria, makes use of its own sulfotransferase proteins as cell-surface

receptors to enter into the host, and thus are a target for malaria prevention drugs (Chai et al., 2002).

The phylogeny for this family including 48 proteins with experimental functional annotations from

the GOA database (Figure 2) shows that 18 of these 48 proteins have only sulfotransferase annotations.

We excluded these from the accuracy measures and ROC-like analyses because they are not sufficiently

precise descriptions of molecular function; we left them in to compute the precision-recall curves and

F-scores because they are consistent with the true function. 30 proteins remained in the experimentally

annotated data set, 28 of which have one of eight specific sulfotransferase annotations. Five of these

sulfotransferase functions appear only once in the tree. The five proteins with singleton annotations will

necessarily have incorrect prediction in SIFTER’s leave-one-out cross-validation, as no correct annotation

is available within the tree and the model parameters do not facilitate mutations to unobserved molecular

functions. We used a more recent version of the GOA database for BLAST-GO than for SIFTER and

other methods, which positively impacts its performance (e.g., estrone sulfotransferase activity is an
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experimental annotation for one protein for SIFTER, thus impossible to predict, but is an experimental

annotation for six proteins for BLAST-GO). The PFP database contained 27 of the 30 experimental

annotations (all but the annotations for rat sequences), and we could not exclude self-annotations.

Evaluating SIFTER using leave-one-out cross-validation with exact computation yields 70.0% accu-

racy. For comparison, BLAST-GO achieves 83.3% accuracy, PFP achieves 76.7%, FFPred achieves 0%

accuracy, conFunc achieves 63.3% accuracy, and BLAST achieves 50% accuracy. The ROC-like analysis

(Figure 3A) shows that SIFTER performs better than all methods across all false positive rates, except for

a small region where PFP performs slightly better. SIFTER has 187 false positive annotations at the most

permissive cutoff, whereas PFP has 1569.

The precision-recall analysis (Figure 3B) shows SIFTER performing better than the other methods

at high levels of recall, offering the option of particularly high precision, with conFunc performing

almost as well. PFP performs well at the lowest and highest levels of recall, but we cannot assume this

performance generalizes to unannotated proteins (we did not remove self-annotations in PFP). BLAST-

GO shows good performance below 0.6 recall, where precision goes down fairly dramatically. The

precision-recall curve for FFPred takes on a different shape than for the others because of the very small

number of predicted functions at all cutoffs. Although PFP has more accurate predictions than SIFTER,

the F-score is lower, indicating that there were more false positive predictions with PFP. ConFunc used

both experimental and non-experimental GOA annotations, and does well at high levels of recall. The

difference between the F-score and the FX-score for conFunc was relatively large, indicating that the

predictions for some of the proteins with a general sulfotransferase annotation were more specific (as with

SIFTER). FFPred did poorly because it had trained parameters for only one of the candidate functions

for this family; this is also reflected in its low F-score. BLAST made correct predictions for six proteins

that were missed by SIFTER, including four with unique function annotations. This illustrates a possible

benefit of using multiple sources of protein annotations within SIFTER rather than relying strictly on

annotations from the GOA database.

Results from each of the methods discussed here, including SIFTER, necessarily depend on which

version of each database was used (e.g., UniProt, Pfam and GOA). PFP, FFPred, and conFunc all use as
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input manually-built databases that are drawn from various versions of publicly available databases, and

so the input data are effectively untouchable. For SIFTER, we can compare different versions of databases

for the same family, but it is difficult to generalize conclusions because the changes appear to be version-

and family-specific (see Supplemental material for further discussion). Our results here reflect practical

application of these methods but yield only limited insight into the impact of database version on results.

To assess the accuracy of the truncation approximation, we compared the performance of exact leave-

one-out cross-validation with each of the eight possible truncations in the sulfotransferases. The ROC-

like analysis (Supplemental Figure 6) shows that the impact of the truncation is small at all levels. Trun-

cation levels 8 through 3 achieved the same level of accuracy as the exact algorithm (70.0%), missing the

same proteins, and levels 2 and 1 achieved 66.7% accuracy. At level 1, SIFTER made an incorrect predic-

tion for the protein OST5 HUMAN; at level 2, SIFTER made incorrect predictions for ST1B1 MOUSE

and ST1C1 MOUSE. The approximation improved the run time by a significant margin—500-fold in

the case of of T = 2—with minimal reduction in the quality of the results (Supplemental Figure 7).

Nudix Family

The Nudix hydrolase family (PF00293) includes 3703 proteins in Pfam release 20.0. Nudix proteins

are characterized by the highly conserved 23 amino acid motif GX5EX7REUXEEGU (where U is

a hydrophobic residue and X is any amino acid). Initially they were discovered to have activity on

nucleoside diphosphates, but number of non-nucleoside substrates have since been identified (Koonin,

1993; Bessman et al., 1996). The functions suggest roles in nucleotide pool sanitation, the removal of

toxic metabolic intermediates, mRNA stability, and signaling (McLennan, 2006). While the Nudix motif

forms a loop-α helix-loop structure, providing a scaffold for coordinating cation binding and catalysis,

residues that govern substrate specificity lie outside of the motif (Koonin, 1993; Mildvan et al., 2005).

Function prediction in the Nudix family is difficult because sequence diversity reduces the alignment

quality of these proteins, which in turn reduces the quality of the phylogeny. A bootstrap analysis of

the alignment for the experimentally characterized proteins had an average node bootstrap support of

38%, and there are only five small clades with more than 95% bootstrap support (Figure 4). Attempts
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have been made to use structural alignments as a scaffold, but these too suffer from the family’s diver-

sity (Ranatunga et al., 2004). The impact on SIFTER is noise in the tree reconstruction, but SIFTER’s

statistical model was chosen for robustness to this noise. Further, the tree shows numerous examples of

possible parallel functional evolution, and many of these proteins have multiple functions.

Our own manual literature search revealed 97 proteins with experimentally characterized functions.

Comparing the 37 Nudix proteins with experimental annotation in the GOA database against our litera-

ture search identified mistakes in the GOA database, so we used only the annotations from our literature

search. We also found the set of GO terms for this family incomplete and inconsistent, so we augmented

the ontology with 98 additional molecular function terms and rearranged the hierarchy for biochemical

accuracy. (See Supplemental material; complete details will be published elsewhere.) The Nudix fam-

ily then had 66 candidate functions, which is a prohibitively large number of candidate functions for

SIFTER with no truncation. Even truncating at two, the 4356×4356 parameter matrix made computation

intractable. Thus, we computed posterior probabilities at truncation level one.

On the Nudix family, SIFTER achieved 47.4% accuracy, whereas BLAST achieved 34.0% accuracy. In

the ROC-like analysis (Figure 5), we see that SIFTER outperforms BLAST at all levels of false positives.

Approximately 2.4% of annotations are correct in BLAST at 99% specificity, whereas for SIFTER 24.4%

of the annotations are correct at 99% specificity. The SIFTER curve shows that, although functional

diversity limits prediction quality within this family, SIFTER still performs comparatively well, especially

at low levels of false positives. While overall accuracy is relatively high for BLAST, the ROC-like analysis

shows a general weakness of the BLAST results. Including all predicted terms at any E-value less than or

equal to 0.01, only 23.3% of the correct Nudix annotations show up at all. This percentage is lower than

the total number of correctly annotated proteins because 48 of the proteins have multiple functions. This

study focuses on SIFTER’s ability to handle extremely large numbers of candidate functions and on the

limitations of the Gene Ontology. As such we do not have a precision-recall analysis because we rebuilt

the Gene Ontology for this family and because the BLAST keyword script did not include all ancestral

terms of the candidate functions, which is prohibitively time consuming to build.

We used this family’s functional diversity to examine the tradeoff between sensitivity and functional
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term precision. We manually substituted general ancestral terms for candidate functions and saw the

accuracy of both methods improve considerably: SIFTER achieved 78.4% accuracy and BLAST achieved

42.0% accuracy. The ROC-like analysis also shows improvements (Figure 5): SIFTER predicts 43.6% of

the annotations correctly at 99% specificity, and BLAST predicts 1.7% of the annotations correctly at 99%

specificity. The reason that generalized BLAST performs poorly relative to the non-generalized BLAST at

high specificity is that a large number of general but incorrect hydrolase predictions are made with low

corresponding E-values; although these terms were ignored when the candidate functions were specific,

they were considered incorrect when the candidate functions were generalized. These experiments (see

Supplemental material) tell us that biologists needing general function predictions for a set of proteins

may sacrifice term precision in return for more accurate predictions. However, based on our GO analysis,

it remains to be seen whether the GO hierarchy can be reliably used to generalize protein function.

Proteins from S. pombe

We tested whether SIFTER 2.0 could be applied to whole-genome functional annotation. Using the

complete genome sequences of 46 fungal species (Supplemental Figure 10), we built 241 Pfam protein

families that contained experimental annotations from S. pombe and at least one other fungal organism,

with a total of 398 S. pombe proteins (see Methods). There are 15 families with nine or more candidate

functions; analysis with SIFTER 1.1 is not possible on these families. Results are summarized in Table 2.

SIFTER achieved 45.5% accuracy (181 of the 398 S. pombe proteins). We define a prediction as con-

sistent when the predicted term is a descendant of the protein’s functional annotation in the GO hierarchy.

Consistent predictions are not necessarily incorrect, but simply more specific in the GO hierarchy than

the annotated term. SIFTER achieved 64.1% consistency (255 consistent predictions for 398 proteins).

For comparison, BLAST-GO achieved 62.6% accuracy and 70.1% consistency. PFP achieved 5.7% ac-

curacy and 5.7% consistency. FFPred achieved 6.1% accuracy (24 of 393 proteins for which it made

predictions) and 6.1% consistency. ConFunc achieved 30.6% accuracy (119 of 389 proteins for which it

made predictions) and 51.9% consistency. The PFP database did not contain annotations from S. pombe,

so the results do not include self-annotations. For BLAST-GO, 93 of the 249 correct predictions required
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breaking ties in favor of the correct annotation. For conFunc, 69 correct predictions and 110 consistent

predictions required breaking ties in favor of the correct or consistent annotation. The FX-score consid-

ers a predicted term that is more specific than the annotation term to be correct, so we see that SIFTER

has a large improvement between F-score and FX-score based on this characteristic. For these metrics,

BLAST-GO performs better than SIFTER on these data, and both perform better than the other methods.

As with the sulfotransferase family, one reason BLAST-GO may be performing better with these metrics

is because a different version of the GOA database is used.

A ROC-like analysis (Figure 6A) illustrates the benefit of SIFTER at low levels of false positives.

There were 27867 false positives in the PFP predictions (Table 2), as compared with SIFTER’s 2233

false positives. The ROC-like analysis shows that, across low levels of false positives, SIFTER provides

a large number of precise and correct predictions for the S. pombe proteins relative to the other four

methods. BLAST-GO, PFP, and conFunc value quantity of annotations over quality: with 140 true positive

predictions, PFP returns 3165 false positive predictions, whereas SIFTER returns 2233 false positive

predictions with the same number of true positive predictions. The true positive rate for SIFTER does

not reach 100% for two reasons. First, SIFTER only makes predictions at the most specific level of

annotation, so more general experimental annotations for a protein, which make up approximately half of

all annotations, are counted as a false negative regardless of whether the annotation is consistent with the

prediction. Second, the held-out S. pombe experimental annotations were not always contained within

the candidate functions. The average number of SIFTER candidate functions including the S. pombe

protein annotations is 4.2; holding out the S. pombe annotations there are an average of 3.6 candidate

functions. Thus, the experimental annotations for the S. pombe proteins account for about 15% of the

functional diversity in these families, and the absences of these predictions are counted as false negatives.

In the precision-recall curve (Figure 6B), FFPred shows high precision at low levels of recall relative

to the other methods; this is because the support vector machine used in FFPred was only trained on a

few general molecular function terms, and those terms are often correctly predicted. However, the set of

predicted terms and their ancestors only includes around 60% of the set of true terms, so recall suffers.

Between 0.5 and 0.9 recall, SIFTER precision dominates the other methods for most of the plot, with
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PFP performing better above 0.9 recall. This illustrates that PFP predicts almost the complete set of

annotations; however the correct predictions are only a small proportion of the total predictions.

The performance of these methods can be understood by examining their predictions. PFP tends

to annotate proteins with general predictions, so many predictions are consistent with the experimental

annotations, but few are as precise. For example, protein HMCS SCHPO, annotated in the GOA database

with hydroxymethylglutaryl-CoA synthase activity, was predicted to have the general transferase activity

by PFP. The precise term hydroxymethylglutaryl-CoA synthase activity appeared in the list of predictions

with a much lower score. BLAST-GO annotates HMCS SCHPO with the precise term by transferring

this experimental annotation from the very similar HMCS YEAST sequence. FFPred uses a support

vector machine that is built to make predictions for only a subset of the GO function terms. Thus,

FFPred predictions tend to be more general than the experimental annotation. For example, the same

HMCS SCHPO protein had a single prediction for the general term transferase activity. ConFunc tends

to predict more general terms, but it had better accuracy because often both general and specific terms

had the same maximal score. For example, the same HMCS SCHPO protein had two annotations with

the same high score: the precise term and a more general term. This explains why over half of the precise

predictions were tie-breakers with an average of ten highest-scoring terms.

Despite the harsh restriction of experimental evidence that we required for the S. pombe proteins

included in this experiment, which limited the number of proteins, we are optimistic regarding SIFTER’s

potential for whole-genome annotation. In our fungal data set, S. pombe had 5004 proteins, so we pro-

duce predictions for approximately 8% of the proteins in the genome. Seeding SIFTER with proteins from

species outside of fungi may improve accuracy by increasing the number of available experimental anno-

tations. As of Pfam 24.0, 88.5% of S. pombe proteins have at least one Pfam domain assignment, which

comes with a precomputed phylogeny, eliminating the bulk of the computational effort of phylogeny-

based function prediction. Extrapolating from our experiments, we expect SIFTER 2.0 runs to take on

the order of 12 hours for the full set of families with S. pombe proteins. In summary, SIFTER performs

45% better than the next best method on the task of precise prediction of molecular function on this

functionally-diverse gold standard S. pombe data set.
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Discussion

This paper addressed molecular function prediction in large and functionally diverse protein families.

Taking as our point of departure the statistical approach to phylogenetics-based functional prediction

embodied in SIFTER, we developed a novel transition model based on a continuous-time Markov chain

to improve the extensibility of the method, making the evolutionary model completely general and en-

abling straightforward extensions to SIFTER to include additional types of biological data. Furthermore,

we reduced the exponential time complexity of SIFTER via a simple but effective approximation that

truncates possible function combinations within each protein. We found that the accuracy of SIFTER

2.0 is comparable to SIFTER 1.1. We showed in the sulfotransferases that the truncation approximation

has excellent performance at all levels of truncation. We saw that SIFTER with approximate compu-

tation performed far better than BLAST on the Nudix family, which was beyond the scope of SIFTER

1.1. We showed that SIFTER can be applied in an automated way to annotate whole genomes using a

gold-standard S. pombe data set containing proteins from fungal genomes. SIFTER excels in producing

precise predictions in this domain relative to other popular methods for full-genome annotation.

There are several directions to pursue in envisaging further improvements to SIFTER and to protein

function prediction generally. Many of these directions exploit the flexibility of SIFTER and are readily

accessible in its current version; in particular, SIFTER does not use any precompiled databases or parame-

ters estimated from training data, but takes as input a phylogeny of protein sequences and annotations for

those protein sequences (and how those annotations are related to each other). As such, one can imagine

using many different resources for the annotations (e.g., EC numbers, GO biological process and cellular

component ontologies, or text annotations from the nr database), or protein families (e.g., significant hits

in BLAST for seed proteins, phylogenies from the PANDIT database (Whelan et al., 2006)). While some

of these alternative data types require further research, such as whether cellular components conform to

the assumptions of a phylogenetic analysis, most are immediately implementable.

Another extension to SIFTER would be to use the GO hierarchy to produce more general predictions

with higher confidence. In particular, one may propagate the posterior probabilities of the candidate

terms to the root of the GO hierarchy to find posterior probabilities for the more general terms in the
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GO DAG. This process would use the same model of the GO DAG for incorporating evidence from the

GOA database to the set of candidate terms. This would improve coverage but reduce precision of the

predictions, particularly in the S. pombe data set. This extension would allow SIFTER to produce general

functional terms as the highest-ranked predictions, analogous to some of the methods compared here.

SIFTER currently does not make use of additional information to help with prediction, such as se-

quence motifs, binding sites, expression data, or protein structure. One benefit of phylogenetic trees and

graphical models generally is that they combine different sources of information in an evolutionarily-

principled way, so SIFTER may be extended to act as a meta-predictor that integrates other protein data.

This could be implemented by augmenting the probabilistic model underlying SIFTER, letting the param-

eters depend on auxiliary information such as motifs or structure. The new SIFTER model was designed

to enable extensions to different data types for application to many problems in protein science. While

we have shown that SIFTER makes high-quality functional predictions and addresses some open issues

in the field of protein function prediction, it also serves as a general platform for future enhancements.

Methods

SIFTER 2.0

We briefly describe SIFTER’s data integration, then focus on theMarkov chain model and the approximate

computation of posterior probabilities (Figure 7); see Supplemental material for further details.

From database data to a model

We extracted the protein families studied here from the Pfam database (Finn et al., 2010), and we used

the manually curated alignments found in Pfam for phylogeny reconstruction. All trees were reconciled

using the Forester v.1.92 program (Zmasek and Eddy, 2001); the reference species tree is from the Pfam

database. When we used GOA annotations (Barrell et al., 2009), we used the annotations with experimen-

tal evidence codes IDA, IMP, and TAS. Where we independently found experimental characterizations in

the literature, we labeled that annotation as TAS.
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In the SIFTER model, each protein i is associated with a random vector Xi, where each Boolean

component represents one candidate function that takes value 1 when protein i has that function and 0 if

the function is not associated with protein i. We choose the candidate functions for a particular family by

using the GO directed acyclic graph (DAG) structure to find the most specific annotation terms associated

with member proteins that are neither ancestors nor descendants of each other. For any protein, we can

compute the probability of all of the candidate terms by putting a generic probabilistic model on the GO

DAG (see Supplemental material). After selecting the set of candidate terms, we compute the probability

of the candidate terms for each protein (whether or not it has experimental evidence).

Markov Chain Model

The structure of the evolutionary model underlying SIFTER is given by the phylogeny; we must specify

the conditional probabilities at each node in the tree. SIFTER 2.0 employs a first-order Markov chain,

which makes the Markovian assumption that future states are independent of past states given complete

information about the present state. Similar assumptions have long been used to model the evolution of

molecular sequences (Dayhoff et al., 1978; Henikoff and Henikoff, 1992).

LetM be the number of candidate functions in the model, and let N be the number of leaf proteins.

Our Markov chain has three sets of parameters. The parameters σspe and σdup describe the scaling of

time after speciation and duplication events. The vector parameter α = {α1, ...,αM} describes the rate

of function i spontaneously arising when none of the candidate functions are observed in the ancestor

protein. The matrix parameter Φ = {φ11,φ12, ...,φMM} represents rates of mutation and loss: the off-

diagonal elements φij , i #= j, describe the rate for a protein with function i mutating to perform function

j (while retaining function i), and the diagonal elements φii describe the rate at which function i is lost.

Using parametersΦ and α, we can build the transition rate matrixQ for a Markov chain that describes

the instantaneous rate of change in functional activity from an ancestor to its descendant. For example,

the matrix Q for two candidate functions has on its rows (parent states) and columns (child states) all

possible combinations of two functions for the parent and child proteins, namely {00, 01, 10, 11}. In this

terminology, “01” (for example) means that the first candidate function is not present (0) and the second
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candidate function is present (1) in a protein’s state. A transition rate matrix Q, defined by variables Φ

and α, is shown in Table 3 forM = 2, and is constructed analogously forM > 2 candidate functions.

We constrain the rows of the matrix Φ to positive values that sum to at mostM . Similarly, we con-

strain the α parameters to theM simplex. Furthermore, we constrain these parameters away from zero

so as to avoid creating sink states or unreachable states in the Markov chain when estimating parameters

(specifically, all parameters are constrained to be greater than 0.01). Because Φ and α are used to con-

struct the transition rate matrix Q, each non-zero, off-diagonal entry in matrix Q implicitly has a finite

upper bound and positive lower bound. See Supplemental material for additional intuition.

The conditional probability of a child configuration given a parent configuration is as follows, from

the definition of a continuous-time Markov chain:

p(Xi = sj |Xπi
= sk, ti,Φ,α,σ) = {exp(tiσQ)}k,j .

In this equation, Xi is the random vector associated with protein i, Xπi
is the random vector as-

sociated with protein i’s immediate ancestor, ti is the length of the branch between Xi and Xπi
, j

and k index the power set S, sj and sk ∈ S, and exp is the matrix exponential function, such that

exp(tσQ) =
∑

∞

k=0
(tσQ)k

k! . Element (k, j) of the transition probability matrix exp(tiσQ) is the proba-

bility that an ancestor protein in state k mutates to state j in the descendant protein during time ti (here,

the phylogenetic branch length, which must be non-negative). The joint probability of the tree is:

p(X|Φ,α,σ) = p(Xroot)
∏

i∈tree

p(Xi|Xπi
, ti,Φ,α,σ).

The parameters of this model can be estimated using generalized expectation maximization (GEM) (Gel-

man et al., 2003), which is not currently applied to any data set other than the AMP/adenosine deaminase

family because of the large number of parameters relative to the number of available annotations. See

Supplemental material for a complete description.

SIFTER’s Approximate Computation

The time complexity to compute posterior probabilities for the SIFTER model is linear in the number

of proteins, but exponential in the number of candidate functions due to the 2M possible combinations
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of candidate functions for each protein in the transition rate matrix, which has (2M )2 entries. Com-

puting matrix exponentials explicitly for each branch in the tree has a computational complexity of

O(N((2M )2·3). WhenM is large, the time to compute posterior probabilities is dominated by the expo-

nential complexity in the number of candidate functions. Our approximation allows at most T candidate

functions with value 1 in the transition rate matrix power set. This shrinks the number of elements under

consideration to
∑T

i=1

(

M
i

)

. In the Nudix family, setting T = 1, the set of candidates has 67 elements

(each candidate term and the empty set), which means there are 4489 elements in the transition rate ma-

trix Q. Without truncation, the power set has approximately 7.38× 1019 elements, and the Q matrix has

approximately 5.44× 1039 elements. Computation time is reduced from infeasibly long to seconds.

Application of SIFTER

We ran SIFTER 2.0 as follows. We set default parameter values to φii = 0.5, φij = 1.0 for i #= j,

σspe = 0.03, σdup = 0.05, and αi = 1.0. We estimated parameters only for the AMP/adenosine

deaminase family (see Supplemental material); for the remaining families, the number of parameters is

larger than the number of available observations, making estimation unproductive. We ran leave-one-

out cross-validation on the protein families by removing evidence associated with a single protein and

computing the posterior probabilities. All experiments where timing results were reported were run on

Dell Precision 390Workstation computers with Intel Core2Duo 2.6 GHz processors and 2 Gb RAM.

Methods for comparison

The BLAST assessment was performed on the non-redundant (nr) set of proteins downloaded from the

NCBI website on December 11, 2006. We ran BLASTP (version 2.2.4 (Altschul et al., 1990)) with an

E-value cutoff of 0.01. For each query protein we removed any exact matches from the same species

to ensure that the query protein did not receive its own database annotation (emulating a leave-one-out

experiment). We transferred the functional term(s) associated with the most significant BLAST hit that

had an annotation with keywords within the candidate functions for that protein family; see Supplemental

material for more details. If multiple proteins shared an E-value, we transfered all of the annotations and
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broke ties in favor of the correct prediction. Historically, when researchers use BLAST for large-scale

molecular function annotation, the function of either the most significant non-identity hit or the most

significant non-identity annotated hit is transferred to the query protein, often leading to no prediction or

an incorrect (or overly general) prediction. We found that restricting BLAST annotations to the candidate

functions increases the overall accuracy of the BLAST predictions. We did not compute F-scores, FX-

scores, or precision-recall curves for this comparison method because the keyword script did not include

all ancestral nodes in the GO hierarchy. The metrics for the results were computed by determining true

positive and false positive annotations for E-value cutoffs between 0 and 0.01.

The BLAST-GO assessment was performed on the Swiss-Prot/TrEMBL proteins downloaded from the

UniProt website on June 21, 2010, so its annotations were more recent than those used by other methods.

We ran BLASTP (version 2.2.23 (Altschul et al., 1990)) with an E-value cutoff of 0.01. For each query

protein we first removed any exact matches (by name) to ensure that the query protein did not receive

its own annotation. Given a ranked list of proteins by E-value, we found the highest ranking protein

with at least one experimentally-validated molecular function term from the GOA UniProt 80.0 database

that was also in the set of candidate functions for that protein family and transferred those functional

terms. (For the S. pombe experiment we did not limit the transferred terms to candidate functional terms

because the correct term was not necessarily in the set of candidate functions for the protein family.) If

multiple proteins shared an E-value, we transfered all available annotations and broke ties in favor of

the correct prediction. The metrics for the results were computed by determining true positive and false

positive annotations for E-value cutoffs between 0 and 0.01.

We ran Protein Function Prediction (PFP) downloaded in August, 2009 (Hawkins et al., 2006) from

the executable provided by the authors, with the default settings. We computed the metrics for the results

based on the PFP scores. We could not remove annotations from the PFP database that were for the

proteins that we were querying, so cross-validation was not possible.

We ran FFPred (Lobley et al., 2008) from the executable provided by the authors, with the default

settings. FFPred uses a large amount of third-party software, all of which was downloaded in August,

2009. We computed all of the metrics for the results using the scores. We did not find any of the
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annotations in our test sets also present in the FFPred training data.

The authors of conFunc (Wass et al., 2008) applied their method (August 2009) to our sequence data

in the cross-validation setting, guaranteeing that none of the sequences were self-annotated from their

database. The UniProt and associated GOA database were both downloaded in January, 2009. Per the

author’s suggestions, we used the ratio of the GO term’s associated protein’s PSI-BLAST E-value, or C-

value, compared to the lowest GO term C-value for that sequence to compute metrics for the results. We

empirically confirmed this to be the most accurate scoring mechanism.

Metrics for evaluation

To compute accuracy for a given data set, we counted the number of proteins for which the top ranked

prediction exactly matched the experimental annotation, and divided by the total number of proteins.

In the case of multiple experimental annotations or top ranked predictions, we counted the protein as

having an accurate prediction when the intersection of the two sets was not empty. For the deaminase,

sulfotransferase, and Nudix families, we filtered the experimental annotations and the prediction terms

to include only SIFTER’s candidate functions for the family.

To compute the F-score and extended F-scores, we included each annotation and predicted term (i.e.,

the terms with the maximum score for SIFTER, PFP, and FFPred, or minimum score for BLAST-GO and

conFunc), and all ancestral terms of these terms including the root of the GO hierarchy in the set of

predicted terms P and the set of experimental annotations T (each term in each set was present only

once). The intersection of these two sets is the number of correct predictions C. Using | · | for cardinality

of a set, we can define precision as |C|/|P | and recall as |C|/|T |. Then the F-score is the harmonic mean

of precision and recall, or F = 2|C|/(|P |+ |T |). The FX-score considers predicted terms that are more

specific than the most specific annotation to be correct (i.e., in the set T ). To compute the FX-score,

when the predicted term was more specific than the most specific annotation (and this annotation was

ancestral to the predicted term), we added the count of more specific predicted terms to both the set of

correct terms C and the set of true terms T , and then we computed the F-score of these modified sets.

Our ROC-like analysis evaluates the fraction of true positives as compared with the fraction of false
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positives across all cutoff values, where a positive prediction is one that has a posterior probability above

the cutoff. This is not a standard ROC analysis: instead of one correct and one incorrect classification,

there is (e.g., in the case of the sulfotransferase family) one correct and eight incorrect classifications

for every protein. We only consider exact term matches, so predictions that are consistent with, but

not equal to, the correct annotation are treated as false positives. Some of the methods will not have

ROC-like curves that start or end at the standard position; at the left end of the y-axis this is because

identical scores on both false positive and true positive annotations force the curves to start higher on

the x- and y-axes than the other curves, and near the right end of the y-axis this is because there are not

always scores for the total number of incorrect annotations for each protein. In the case of SIFTER, we

built the ROC-like curve based on the leave-one-out runs, where, for each protein, using a cutoff from

1.0 to 0.0, we compute the number of false positives (FP) divided by the total number of FPs plus true

negatives (TNs), and plot this against the number of true positives (TP) divided by the total number of

TPs plus false negatives (FN). Because the number of false positives varied so widely between methods,

we divided the x-axis fraction by the maximum of FP+TN over all of the methods (and we include the

number of false positives for each method in Tables 1 and 2).

We also present precision-recall curves for results from the different methods as a metric that does

not penalize predictions that are consistent with, but more general than, the annotation. In particular, we

compute the set of true function terms T as for the F -scores, and compute the set of predicted terms P

including only the predicted terms (and their ancestral terms) with a score above a cutoff (or below for

BLAST-GO and conFunc); the set of correct terms C is then the intersection of these two sets. Then, as

for the ROC-like analysis, we compute T , P and C for all possible values of the cutoff (although the set

T does not vary across cutoffs). We can plot recall, |S|/|T |, versus precision, |S|/|P |, across all values

of the cutoff. These curves are not monotone because the precision may not increase in a monotone way

as the sets C and P increase in size at different relative rates, so their ratio does not always increase.

Here we have adapted two standard evaluation metrics (ROC-like and precision-recall) to compare

GO functional predictions, each with different measures of correctness. The ROC-like metric applied

here highlights the quality of the precise predictions from each method, whereas the precision-recall
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metric applied here highlights prediction consistency and completeness. Both metrics have shortcom-

ings: ROC-like analysis considers predictions that are more general than the true, precise molecular

function to be incorrect, whereas the precision-recall metric assumes that the structure of GO is correct

and rewards imprecise predictions. SIFTER was designed to make accurate and precise functional pre-

dictions, which are critical for important biological applications including experimental characterization

of protein activity. The ROC-like analysis and associated accuracy measure used here are helpful to

evaluate predictions based on these design criteria. Other applications, including some types of whole-

genome annotation, may benefit from more general function annotations while minimizing the number

of predictions inconsistent with the true molecular function; the F-scores and the precision-recall metric

may be more appropriate to assess the different methods in this regime.

Data set preparation

Sulfotransferase family

The GOA Uniprot 37.0 contained experimental GO molecular function annotations for 48 proteins, of

which we did not use 18 of them because they were too general, leaving 30 proteins with experimental

annotations. These 18 proteins were included to compute the F-scores and FX-scores for every method.

The alignment for the full phylogeny was from Pfam 20.0. The subset of sequences with experimental

annotations were aligned using hmmalign (Eddy, 1998) with the sulfotransferase HMM profile from

Pfam release 20.0. The phylogenies were reconstructed using PAUP* version 4.0b10 maximum parsi-

mony with the BLOSUM50 matrix.

Nudix family

The Nudix family alignment was taken from Pfam 20.0 and we reconstructed the phylogeny from the

neighbor joining algorithm in PAUP* version 4.0b10 (Swofford, 2001) because of the large size of the

family. The subset of sequences with experimental annotations were aligned using hmmalign (Eddy,

1998) with the Nudix HMM profile from Pfam release 20.0. This smaller phylogeny was built using

PAUP∗ version 4.0b10 maximum parsimony with the BLOSUM50 matrix. The bootstrap analysis of
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the smaller tree using neighbor joining was performed using Phylip (Felsenstein, 1989) downloaded

October, 2006 with 100 replicates. Function annotations were assigned to proteins from the literature

by contrasting different levels of experimental evidence for a given hydrolase to prune the less specific

substrates from a larger list of assayed compounds. We set the truncation level to T = 1 for all of the

SIFTER Nudix experiments. We ran BLAST on this family because we could manually build the text

parser to include all of the candidate functions from our modified ontology. We did not run BLAST-GO,

PFP, FFPred, or conFunc here because the reorganized GO hierarchy would not enable a comparison

between between SIFTER or BLAST results and results from these GO-based methods.

Fungal genomes data

The genomes from 46 different fungal species had been sequenced as of June, 2006. Gene finding

was performed in each genome using a number of different methods; see (Stajich, 2006) for details.

We searched each resulting protein for Pfam domains using hmmsearch (Eddy, 1998) for the Pfam-A

domains available in Pfam version 20.0. We aligned each set of homologous fungal proteins to each

other using hmmalign based on the Pfam-A HMM profile for that family domain (Eddy, 1998). We

reconstructed phylogenies for each domain with PAUP∗ version 4.0b10, using maximum parsimony with

a BLOSUM50 matrix when the size of the alignment file was less than 10000 Kbyte, and neighbor

joining with default parameters when the size of the file exceeded that. We reconciled the trees against

a species tree (Supplemental Figure 10) using Forester version 1.92 (Zmasek and Eddy, 2001). Pfam

domains with fewer than four protein sequences from the 46 fungal genomes were eliminated.

We gathered molecular function annotations for each fungal protein in a Pfam-A domain from the

GOA database by running BLAST version 2.2.4 (Altschul et al., 1990) for each proteins against UNI-PROT

fasta database, downloaded September 23, 2006 (UniProt Consortium, 2010b), with an E-value cutoff of

1× 10−100. We found exact hits with identical species to map the UNI-PROT identifiers to the proteins in

the fungal genomes. We extracted molecular function annotations from the GOA Uniprot database 42.0.

For each family with experimental annotations from multiple species including S. pombe, we re-

moved the experimental annotations for S. pombe proteins in order to predict those annotations using
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the available experimental annotations. We computed posterior probabilities once for each family, us-

ing SIFTER default parameters. SIFTER runs were performed exactly for families with fewer than nine

candidate functions; otherwise we truncated at two for 9 to 19 candidate functions and at one for 20 or

more candidate functions. As elsewhere, if there were multiple predictions for a single protein (because

it was in multiple Pfam-A families), we used the correct one to compute accuracy. We did not run BLAST

because it is prohibitively time-consuming to build a keyword parser for all of these molecular functions.
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Figure Legends

Figure 1 - Sequence similarity does not directly reflect phylogeny

The proteins in this tree have either molecular function A or B. There is a duplication event indicated by

a red square and the query protein denoted by “?”. The most significant BLAST hit for the query protein

will be B1, because the path length in the phylogeny from the query protein to B1 is the shortest, Thus

BLAST-based prediction methods will transfer B to the query protein. However, it is more likely that

the tree has only one functional mutation, in which ancestral function B mutated to function A on the

left-hand side of the bifurcation after the duplication event. So A is a better annotation for the query

protein. A phylogenetics-based approach reaches this conclusion naturally. Adapted from (Eisen, 1998).

Figure 2 - Phylogeny of experimentally characterized sulfotransferase proteins

The phylogeny of the experimentally characterized proteins found in the sulfotransferase family (PF00685).

The colors indicate the experimentally characterized protein functions, as specified in the key.
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Figure 3 - Sulfotransferase family prediction comparison

Panel (A) shows the ROC-like analysis of SIFTER with BLAST, BLAST-GO, PFP, and conFunc for the

sulfotransferase family of proteins. We did not include FFPred because there were not sufficient numbers

of true positive predictions to show up on this plot. Note that the x-axis is on a log scale. Panel (B) shows

the precision-recall analysis of SIFTER with BLAST, BLAST-GO, PFP, conFunc, and FFPred.

Figure 4 - Phylogeny of experimentally characterized Nudix proteins

A reconciled phylogeny of the experimentally characterized hydrolase proteins found in the Nudix fam-

ily. The colored numbers in brackets after the protein name represent a clustering of the proteins into

their biological functions, determined from our own literature search and described in more detail in

future work. The purple dots represent clades that have greater than 95% bootstrap support.

Figure 5 - SIFTER-BLAST Nudix comparison

A comparison of BLAST and SIFTER for the Nudix family of proteins. SIFTER consistently dominates

BLAST annotations under this criterion. The SIFTER-C and the BLAST-C lines are the evaluation of

SIFTER and BLAST using the generalized Nudix hydrolase terms as experimental annotations. It is in-

teresting that, at more than 99% specificity, both BLAST and SIFTER performed as well or better on the

original data sets than the generalized data sets. Note that the x-axis is on a log scale.

Figure 6 - S. pombe function prediction comparison

Panel (A) shows the ROC-like analysis of SIFTER with BLAST-GO, PFP, conFunc, and FFPred. Note that

the x-axis is on log scale. Panel (B) shows the precision-recall analysis of SIFTER with BLAST-GO, PFP,

conFunc, and FFPred.

Figure 7 - Overview of SIFTER method

This diagram illustrates the general work flow of SIFTER. (1) A reconciled protein phylogeny and a

file containing some of the family’s proteins with annotations (blue and red functions) are input into
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SIFTER. SIFTER incorporates the observations from the annotation file into the phylogeny. (2) Message

passing propagates the observations from the leaf nodes to the root of the tree. (3) Message passing

then propagates information from the complete set of observations back down to the leaves of the tree,

enabling extraction of posterior probabilities at every node in the tree. Intuitively, posterior probabilities

at a node take into account every observation scaled by the tree-distance. (4) Predictions can be extracted

from the tree using, in our case, the function with the maximum posterior probability for each protein.

Table Legends

Table 1 – Summary of Results

Summary table for the results on protein families across the methods. Proteins is the total number of

proteins with at least one experimental annotation in the family. AN is the number of proteins with an

experimental annotation in the family for which the method predicted a molecular function. TP is the

number of correct predictions made by the method. F-scores and FX-scores are described in Methods.

Predictions for multifunction proteins are considered correct if at least one of the functions is correctly

predicted.

Table 2 – Summary of S. pombe Results

Summary of results for characterized proteins in the S. pombe genome across all methods. Methods is

the name of the method used; Predicted is the number of proteins for which the method made at least one

prediction; Precise count is the number of proteins for which a top-scoring prediction exactly matched

the characterized function; Precise percent is the precision percentage; Consistent count is the number of

proteins for which a top-scoring predictions was either ancestral to or descendent from one of the actual

predictions; Consistent percent is the percentage of consistent predictions. FP is the number of false

positives when the cutoff is permissive enough to accept all of the TP annotations.
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Table 3 – Rate Transition Matrix

The instantaneous transition rate matrix used in SIFTER forM = 2. The rows represent different sets of

functions for the parent protein; the columns are child functions. Recall that αi is the rate of a function i

arising, φij is the rate of a protein with function i mutating to also have function j, and φii is the rate of

function i disappearing. The diagonal elements in this table are set such that the rows sum to zero.
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Figure 1. Sequence similarity does not directly reflect phylogeny.
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Figure 2. Phylogeny of experimentally characterized sulfotransferase proteins.
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Figure 3. Sulfotransferase family prediction comparison.
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Figure 4. Phylogeny of experimentally characterized Nudix proteins.
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Figure 7. Overview of SIFTER method.
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Tables

Table 1. Summary of Results

Deaminase Sulfotransferase Nudix S. pombe
Method Proteins 33 30 97 398

SIFTER

AN 33 30 97 398
TP 31 21 46 181
FP 48 187 – 2233

F-score 0.93 0.91 – 0.74
FX-score 0.93 0.94 – 0.77

BLAST
AN 33 30 97 –
TP 22 15 33 –

BLAST-GO

AN 33 30 – 391
TP 31 25 – 117
FP 49 157 – 7405

F-score 0.91 0.95 – 0.82
FX-score 0.91 0.96 – 0.83

PFP

AN 33 30 – 398
TP 26 23 – 22
FP 2404 1569 – 27867

F-score 0.65 0.89 – 0.50
FX-score 0.65 0.89 – 0.50

conFunc

AN 33 29 – 389
TP 27 19 – 119
FP 187 151 – 15568

F-score 0.79 0.90 – 0.67
FX-score 0.79 0.93 – 0.68

FFPred

AN 33 30 – 397
TP 1 0 – 24
FP 121 0 – 2200

F-score 0.52 0.66 – 0.55
FX-score 0.52 0.66 – 0.55
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Table 2. Summary of S. pombe Results

Method Predicted Precise Consistent FP
Count Percent Count Percent

SIFTER 398 181 45.5% 255 64.1% 2233
BLAST-GO 398 249 62.6% 279 70.1% 7405
PFP 398 22 5.5% 220 55.3% 27867

conFunc 389 129 32.4% 203 51.9% 15568
FFPred 397 24 6.1% 203 51.6% 2200

Table 3. Rate Transition Matrix

00 10 01 11
00 – α1 α2 0
10 φ11 – 0 φ12 + α2

01 φ22 0 – φ21 + α1

11 0 φ22 φ11 –
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